МАГНИТНЫЕ ЭКРАНИРУЮЩИЕ СВОЙСТВА КЕРАМИЧЕСКИХ СВЕРХПРОВОДЯЩИХ ПЛЕНОК

А.А. Косов, Г.Н. Косова, И.В. Савиных

Марийский государственный университет, Йошкар-Ола

Методом численного эксперимента на квадратных решетках размерами $N\!\!\times\!N$ (1 < N < 1000), моделирующими двухфазную гранулированную сверхпроводящую пленку, найдены пороговые концентрации сверхпроводящих гранул: C_1 , при которой впервые возникают отдельные замкнутые межгранульные токовые контуры, блокирующие несверхпроводящие области, C_2 , при которой возникает объединенный сверхпроводящий кластер, выходящий своими границами на боковую поверхность образца и C_{0R} , при которой возникает протекание замкнутого тока по гранулированной пленке, свернутой в виде боковой поверхности цилиндра. При N=1000 эти концентрации равны $C_1=0.1735\pm0.0235$, $C_2=0.7150\pm0.0100$ и $C_{0R}=0.5939\pm0.0027$. Определена концентрационная зависимость числа нормальных и сверхпроводящих кластеров, заблокированных замкнутыми межгранульными сверхпроводящими токами.

The method of numerical experiment on $N\times N$ (1 < N < 1000) square lattices simulating a biphase granular superconducting film determines the threshold concentration of superconducting grains: C_1 , at which separate closed intergranular current of a contour blocking nonsuperconducting areas appears, C_2 , at which an incorporated superconducting contour with its borders entering a lateral surface of a sample appears and C_{0R} at which closed current runs through a granular film in the form of a cylinder's lateral surface. At N=1000 these concentration equals $C_1=0.1735\pm0.0235$, $C_2=0.7150\pm0.0100$ and $C_{0R}=0.5939\pm0.0027$. The dependence of the number of normal and superconducting contours blocked by closed intergranular superconducting currents on the concentration of superconducting grains is determined in the article.